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Summary
We created an open European, building-by-building and dynamic exposure model based on the engineering
information from the European Seismic Risk Model (Crowley et al., 2020) and open data from OpenStreetMap.
This European model is part of the Global Dynamic Exposure Model that aims at providing building-specific
exposure data globally. This model combines engineering knowledge from existing classical exposure models
with open data and predominantly OpenStreetMap to characterize every building as precisely as possible. It
provides these exposure data in a fully open fashion, including the software system to generate it. To keep the
model and its output open, only open input data is considered. The model is discretized to approx. 100m x 100m
tiles of a global grid while still preserving the information for each building separately. The tiles are used to
approximate building counts in case where OpenStreetMap data is incomplete. To preserve privacy, the publicly
available  data  is  aggregated  to  these  tiles  such  that  information  about  single  buildings  cannot  be  derived.
However, the model input data and codes are openly available and users can create these data themselves. To
create building-wise damage and loss assessments, we also provide a loss-calculator that aggregates losses by
buildings or tiles.

The model is fully dynamic which means that it pulls new building data from OpenStreetMap every minute.
These data are immediately processed and the exposure at the building locations is updated. Each building is
represented by one or more assets describing in a probabilistic way what is known about this building. The
model currently contains all European countries considered in the European Seismic Risk Model, most countries
of South America and Japan. Within RISE, the European part of the model was planned to be finalized. More
countries around the world will be included soon as open classical exposure models are available. The model
data is available as country-excerpts in SpatiaLite databases for easy handling in QGIS or similar software. We
also provide an API for damage and loss assessments based on the model data. 

Introduction
With this deliverable, called the Global Dynamic Exposure (GDE) model, we aim to combine open engineering
information  about  the  global  building  stock  with  further  detailed  open  data  about  buildings,  mainly  from
OpenStreetMap (OSM), to increase the precision of exposure models. This increase is driven by the need to
better  model  the  spatial  variations  in  ground  shaking  during  earthquakes,  to  better  understand  each  single
building  and  the  expected  consequences  for  it  from shaking,  and  to  capture  the  constantly  changing built
environment, e.g. through urbanization and exchange of buildings after their end of life. Furthermore, pointing to
the vulnerability modeling efforts within RISE, higher precision of building characterizations opens the path to
building-specific vulnerabilities which cannot be realized with classical aggregated exposure models (AEMs).
These models provide the exposure data aggregated over administrative regions; these data being the number of
buildings of particular classes, their reconstruction value and number of people inside. These values are given
separately for each building class per region. Thus they provide an overall picture of the expected building
classes  and  their  frequency and exposure  indicators;  however,  their  exact  location,  dimension,  and  further
indicators adding to its specification are not part of such models.

The GDE model consists of six parts that we will describe in detail:

1. Generation  of  approx.  100m x  100m tiles  and  their  properties  related  to  the  built  environment  as
provided by the Global Human Settlement Layer (GHSL).

2. Building processing to understand all available properties from OSM.

3. Completeness estimation of the OSM buildings as compared to the GHSL built area per tile.



4. Spatial disaggregation of AEMs over the tiles.

5. Combination of spatially-distributed AEMs with building data.

6. The full dynamic chain to keep the tile, building, and exposure data up-to-date.

7. Export of static data excerpts.

In this deliverable, we prepare the European part of GDE. It is based on the  European Seismic Risk Model1

(ERSM20) as described by Crowley et al. (2020).

Tile Generation
Before we can distribute the AEMs over space, we need to understand the distribution of built area. Therefore,
we imported the  Global Human Settlement Layer (GHSL,  Pesaresi & Politis,  2022; Schiavina et al., 2022),
providing a first order distribution of built area for the entire globe. GHSL provides assessment of built area in
approx.  10m x  10m cells  as  GeoTIFF.  We vectorize  this  raster  data  into polygons and project  them on a
Quadtree level-18 grid. The Quadtree (Finkel & Bentley, 1974) is a common tiling system used by many Web
Map Services (WMS) like Google Maps, Bing Maps, and OSM in combination with the spatial reference system
EPGS:3857, the Web-Mercator projection (Battersby et al., 2014). The Quadtree sub-divides the square map of
the world into four square-shaped tiles. At this first level of sub-division, called zoom level 1, the world consists
of four square tiles. These can now be further sub-divided, increasing the number of tiles each time by a factor of
four. Here, we use level-18 tiles which are approximately 100m x 100m in size in Europe. Globally we have
more than 68 billion tiles of this zoom level, see Fig. 1. We store each tile with its associated GHSL polygon in
our tile database2, see Fig. 2. These tiles have been chosen to provide fast and easy access to the exposure data
but also to preserve basic privacy when distributing data. 

In the next preparatory step, we obtain all necessary boundaries of all administrative regions for which AEMs
provide exposure data. The ESRM20 uses regions defined by administrative names matching the boundary data
from GADM3. We found many problems in the GADM dataset, mainly low resolution boundary polygons, non-
matching  polygons  between  different  administrative  levels  or  along  country  borders,  and  restrictions  in
distributing this dataset; the latter rendering them to be not fully open. To develop our model on the best possible

1 https://gitlab.seismo.ethz.ch/efehr/esrm20/-/archive/main/esrm20-main.zip
2 https://git.gfz-potsdam.de/dynamicexposure/openbuildingmap/database-obmtiles
3 https://www.gadm.org

Figure 1: Tiles in the area of the Yoyogi-Uehara train station in the Shibuya
district of Tokyo, Japan. Background map: copyright OpenStreetMap 
contributors.

Figure 2: Map as in Fig. 1 with the built-area polygons from GHSL (with 
roads cut out). Background map: copyright OpenStreetMap contributors.



and open boundary dataset, we extract high-resolution boundary polygons from OSM using our tool Borderline4

and store them in our tile database.

Building Processing
We operate a copy of OSM data that is kept up-to-date on the basis of the so-called minutely diffs. These files,
released  every  minute,  describe  the  changes  to  the  overall  OSM  database.  With  every  change,  our  tool
Spearhead5 checks which buildings have been added, changed or deleted, and submits them to our rule-based
processing engine  Rabotnik6. This engine processes all incoming buildings asynchronously and distributes the
load to as many processors as are assigned to it. During this process, we determine for each building separately
several  exposure  indicators  such  as  occupancy and floor  space  based on the  implemented rules.  The most
important rule assesses the occupancy on the basis of the underlying land use of a building, the building tags and
points of interest within the building which can point to specific uses of the building. Further rules extract the
number of stories or calculate this number from a given building height. With the number of stories known and
the building footprint geometry given, we compute the floor space of the building. Further exposure indicators
indicating the  roof  shape,  the  overall  shape of  the  building,  and  the number  of  adjacent  buildings will  be
implemented soon as new rule sets. These indicators are then used to create the taxonomy description as defined
in the GEM Building Taxonomy7 to describe the type of the building.

The building database currently contains around 550 million buildings and is growing by approx. 5 million
buildings a month or 2 per second. The operational system can process several 100 buildings per second so that
it can easily keep up with the growth of data.

Completeness Estimation of Tiles
We have to account in our model for the fact that although OSM is the largest geographic dataset, its collection
of building data is not complete. While several countries already have the complete building stock in OSM
(partly through imports of open cadastral data, such as France, the Netherlands, etc.), other countries may lack
significant portions of these data. With a database containing all tiles and the size of the built area as specified by
GHSL and all buildings from OSM, we can estimate the completeness level of each tile. For this, we have
conducted a manual completeness analysis for the area of Attica, Greece by visually comparing the building data
in OSM with satellite imagery.  Each tile was classified as either complete or incomplete if  buildings were
present in the satellite imagery, otherwise as empty or undecidable in case of cloud cover. We have developed an
empirical function comparing the size of the built-area polygon in the tiles taken from the GHSL with the total
size of the building polygons taken from OSM in the same tile. If a threshold in the ratio is exceeded, the tile is
considered complete. Our tool all-in8 processes all tiles and provides the respective completeness assessment. In
case a tile is considered complete, the built area used later for processing is set to the sum of the area of the
building-footprint polygons in the tile.

4 https://git.gfz-potsdam.de/dynamicexposure/borderline
5 https://git.gfz-potsdam.de/dynamicexposure/openbuildingmap/spearhead
6 https://git.gfz-potsdam.de/dynamicexposure/rabotnik/rabotnik
7 https://gitlab.seismo.ethz.ch/efehr/esrm20/-/archive/main/esrm20-main.zip
8 https://git.gfz-potsdam.de/dynamicexposure/openbuildingmap/all-in



In  some countries  in  Europe,  the  OSM community  has  either  fully  imported  cadastral  data  or  mapped all
buildings. The building data for France and the Netherlands have been fully imported and thus we have assigned
all tiles in these countries manually to complete. This results in each tile now representing the size of building-
footprint  polygons  as  the  built  area  and the  built-area  estimate  from GHSL is  ignored.  Besides  these  two
countries, we identified Austria,  Czechia, Denmark, Estonia, Germany, Iceland, Luxembourg, Liechtenstein,
Monaco,  Poland,  Slovakia,  and Switzerland as also being complete.  While these countries  may still  lack a
handful of buildings, the overall error in exposure data is strongly reduced by only using built-area assessments
based on the buildings in the database over GHSL.

Spatial Distribution of AEM
Before we can combine any of the AEMs with building data, we disaggregate them spatially. The AEMs store a
set  of  assets  per  administrative  region,  where  each  asset  describes  one  building  class,  its  frequency,  total
reconstruction value and number of people inside. We select for each region all tiles within their respective
boundary,  compute the  total  built  area (either based on GHSL or  the building footprints  depending on the
completeness level), and assign each asset to all tiles proportionally to the tile’s built area, creating so-called tile
entities for each tile. At this stage, all assets are homogeneously distributed and each tile contains the same
assets with the same proportions. Thus, this represents a simple spatial disaggregation based on the built-area per
tile. This process is performed with our tool Initializer9 and the result we call the baseline model.

Combination with Building Data
The key process  in  the  entire  GDE chain is  the  combination of the  spatially  disaggregated AEM with the
building data enriched with exposure indicators. For this task, we iterate through all tiles with AEM data in it. In
the first step, we take the assets as imported from the AEM and consider it the final exposure data for this tile,
see Fig.  5. Then we iterate through all buildings and assign them the combinations of assets as defined in the
baseline  model  of  the  tile.  Hereby  we  check  each  building-class  taxonomy  of  the  baseline  model  for
compatibility with the exposure  indicators of the building and only keep the ones that  match the exposure
indicators. This usually leads to a reduced of set of assets that probabilistically describe the possible classes for
each building, see Fig. 6. We normalize the remaining assets per building to represent exactly one building and
store this in building entities. Simultaneously, we reduce the remaining assets in the tile entity by proportionally
subtracting one building. In general, this final model consists of one tile entity and zero to several building

9 https://git.gfz-potsdam.de/dynamicexposure/globaldynamicexposure/exposure-initializer

Figure 3: Map as in Fig. 2 with building footprints from OpenStreetMap. In 
the upper-left corner one can clearly dense built area without building 
footprints, indicating missing building data. Background map: copyright 
OpenStreetMap contributors.

Figure 4: Map as in Fig. 2. The tile built area is colored by building 
completeness. Green and red indicate complete and incomplete tiles, 
respectively. Background map: copyright OpenStreetMap contributors.



entities per tile, see Fig.  7. The tile entity possibly contains assets that have not been encountered for by the
buildings, e.g. a tile  being assigned 7.4 buildings according its  GHSL built  area but only 6 buildings were
present in the database. The remaining 1.4 buildings and their assets are kept being assigned to the tile entity. If
the  tile  is  considered to  be complete,  the  remaining 1.4 buildings are deleted.  Also,  should the number of
remaining buildings be less than zero (more buildings found than expected), this number is set to zero. This
process of combining buildings with the AEM results in reducing the number of possible building classes per
building from the initial number representing the classes per region as defined in the AEM to the ones that match
the building properties. This step is run with our tool Finalizer10.

10 https://git.gfz-potsdam.de/dynamicexposure/globaldynamicexposure/exposure-finalizer

Figure 5: Number of possible building classes per tile according to the 
ESRM20 model in Luxembourg. Background map: copyright 
OpenStreetMap contributors.

Figure 6: Maps as in Fig. 5. Additionally the buildings with their number of 
possible classes are plotted on top. The reduction is clearly visible. 
Background map: copyright OpenStreetMap contributors.

Figure 7: Exposure model for Japan. The number of buildings per tile in the Kanto region is displayed in color. 
The lighter the color, the more buildings are located in the tile. Background map: copyright OpenStreetMap 
contributors.



Full Dynamic Processing Chain
As mentioned above, OSM is changing constantly with approx. 2 buildings being added per second in average,
while others are modified. To keep up with these changes, we developed our processing engine Rabotnik. We
already described how Rabotnik keeps the building database up-to-date by processing every new, changed, or
deleted building. As soon as a building has been processed and inserted into the database, its corresponding tile
is identified and the tile ID is submit to another Rabotnik processing queue. This one estimates the completeness
of the tile that may have changed based on the change of
this one building. It applies the same rule set as the all-in
tool. With this part of the dynamic chain, we keep our
tile database up-to-date and have the latest completeness
at hand for each tile globally.

The  final  dynamic  step  again  employs  our  processing
engine.  After  the  completeness  of  a  tile  has  been
computed, the tile ID is passed on to another  Rabotnik
queue that resembles the process of Finalizer but for one
tile only. This process combines the static baseline model
from the AEM per tile with the most recent building data
and the  new completeness  estimate  computed  seconds
before.

If  somebody adds or modifies a building in OSM and
uploads  their  changes,  it  takes  about  five  minutes  for
OSM  to  provide  the  respective  minutely-diff  file
containing  the  uploaded  change.  As  soon  this  file  is
released  our  replication  process  downloads  it  and  the
computational chain is triggered, see Fig. 8. It takes less
than 2 minutes until the exposure values in the respective
tile of the changes building have been updated, making
our model highly dynamic. This short turn-around times
are helpful in case of disaster-crisis management as any crowd-sourced building mapping continuously updates
the exposure model and helps refining the damage and loss assessments.

Export of static data excerpts
Regarding the dynamic nature of GDE and to facilitate the needs of researchers for reproducible models that can
be referenced, we create special data excerpts. For RISE, we prepared a data excerpt reflecting all input data as
they were on 1 January 2023, 00:00 UTC. For this, we have created an OSM extract of exactly this time and run
the entire processing chain with this data. This results in a European exposure model reflecting the building data
of 1 January 2023. This way, others can rerun our codes with this clearly specified dataset to reproduce our
results. 

Furthermore, from this model we are creating country extracts that are available on Zenodo via a DOI. Given the
privacy-relevant data we produce, the downloadable excepts do not contain any specific building information
anymore. Instead we aggregate the assets of all building and their tile entity into the tile entity to mask the single
buildings and their geometry. If tiles contain too few buildings, we aggregate them further into large tiles to
make sure no conclusions about particular buildings can be derived. The result is in general a multi-resolution

Figure 8: Schema of the Global Dynamic Exposure model. Static 
elements and processes (run once) are displayed in red, dynamic ones 
running with every change in OpenStreetMap are shown in green.



Quadtree tile  grid,  with its  resolution depending on  the building  density,  see  Fig.  9.  This  tile  aggregation
process, following the Quadtree approach by decreasing the zoom level, can also be directly applied to reduce
the resolution for fast loss assessments. All excerpt processes can be run with our tool Share11.

Damage and Loss assessments
To enable the user of our model to run damage and loss assessments with the model, we developed the Loss-
Calculator12 and additionally an API that can be used for smaller-scale assessments. The API takes the basic
parameters of an earthquake and uses the  ShakeMAPI13 to compute a ground-motion field for the earthquake.
Depending on the extent  of  the  ground-motion field,  a suitable exposure  model  is  retrieved from the main
database and stored as data excerpt in a SpatiaLite database. The user can choose the level of aggregation for this
excerpt. The more tiles are aggregated into parent tiles, the faster the loss assessment will be computed; likewise
the full resolution is possible and all buildings will be used separately for any damage or loss assessment. The
Loss-Calculator computes the estimated damage probabilities and losses using the fragility and vulnerability
functions  that the user provides as either CSV or XML files (discrete or continuous fragility functions). The
results are aggregated to each building and tile so that various visualizations are possible. The damage and loss
values  are  also  stored  in  the  same  SpatiaLite  database  that  contains  the  exposure  data.  This  database  is
augmented with special database views about various results and data properties that makes it easy for the user
to visualize them in QGIS, see Fig. 10.

11 https://git.gfz-potsdam.de/dynamicexposure/globaldynamicexposure/exposure-share
12 https://git.gfz-potsdam.de/dynamicexposure/globaldynamicexposure/loss-calculator
13 https://git.gfz-potsdam.de/loki/shakemapi



Technology
The entire software chain is implemented in Python and fully open source. All codes are released under the
AGPL. For data storage, we use PostGIS database running in Docker environments. The data structure of these
databases  is  fully  documented  in  database  migration  scripts.  All  codes,  scripts  and  docker  definitions  are
published on our GitLab14. For local data excerpts, we use SpatiaLite databases. For visualizations, we use QGIS
and have developed plugins for easier handling of our data. All codes we developed are open source and licensed
under the AGPL. All software we rely on is also open source. No proprietary software is needed to implement
and run the model.

14 https://git.gfz-potsdam.de/dynamicexposure

Figure 9: Different levels of aggregation of the exposure model in Andorra for protecting privacy. Colors indicate the number of buildings. The purple tiles
contain fewer buildings than a defined threshold and are joined with their neighboring tiles to parent tiles of lower zoom level. The top left frame shows the
initial model data aggregated on zoom-level 18 tiles. The other frames show the model aggregated down to the minimum zoom level as indicated in the 
bottom right of each frame. The bottom-right frame shows how the number of tiles with low number of buildings has decreased while the high resolution 
of tiles was preserved in areas with many buildings. Background map: copyright OpenStreetMap contributors.



Figure 10: Damage assessment in the city of Athens for an earthquake northwest of the city. Buildings are colored by their probablity for experiencing 
slight damage. The brighter the color, the higher the probability. Both, the spatially varying ground-motion levels and the specific building characteristics 
influence the expected damage grade probabilities. Background map: copyright OpenStreetMap contributors.
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